Structures of Michaelis and product complexes of plant cytokinin dehydrogenase: implications for flavoenzyme catalysis.

نویسندگان

  • Enrico Malito
  • Alessandro Coda
  • Kristin D Bilyeu
  • Marco W Fraaije
  • Andrea Mattevi
چکیده

Cytokinins form a diverse class of compounds that are essential for plant growth. Cytokinin dehydrogenase has a major role in the control of the levels of these plant hormones by catalysing their irreversible oxidation. The crystal structure of Zea mays cytokinin dehydrogenase displays the same two-domain topology of the flavoenzymes of the vanillyl-alcohol oxidase family but its active site cannot be related to that of any other family member. The X-ray analysis reveals a bipartite architecture of the catalytic centre, which consists of a funnel-shaped region on the protein surface and an internal cavity lined by the flavin ring. A pore with diameter of about 4A connects the two active-site regions. Snapshots of two critical steps along the reaction cycle were obtained through the structural analysis of the complexes with a slowly reacting substrate and the reaction product, which correspond to the states immediately before (Michaelis complex) and after (product complex) oxidation has taken place. The substrate displays a "plug-into-socket" binding mode that seals the catalytic site and precisely positions the carbon atom undergoing oxidation in close contact with the reactive locus of the flavin. A polarising H-bond between the substrate amine group and an Asp-Glu pair may facilitate oxidation. Substrate to product conversion results in small atomic movements, which lead to a planar conformation of the reaction product allowing double-bond conjugation. These features in the mechanism of amine recognition and oxidation differ from those observed in other flavin-dependent amine oxidases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Redox-dependent substrate-cofactor interactions in the Michaelis-complex of a flavin-dependent oxidoreductase

How an enzyme activates its substrate for turnover is fundamental for catalysis but incompletely understood on a structural level. With redox enzymes one typically analyses structures of enzyme–substrate complexes in the unreactive oxidation state of the cofactor, assuming that the interaction between enzyme and substrate is independent of the cofactors oxidation state. Here, we investigate the...

متن کامل

Structural characterization of glucooligosaccharide oxidase from Acremonium strictum.

Glucooligosaccharide oxidase from Acremonium strictum was screened for potential applications in oligosaccharide acid production and carbohydrate detection. This protein is a unique covalent flavoenzyme which catalyzes the oxidation of a variety of carbohydrates with high selectivity for cello- and maltooligosaccharides. Kinetic measurements suggested that this enzyme possesses an open carbohyd...

متن کامل

Effects of Cavities at the Nicotinamide Binding Site of Liver Alcohol Dehydrogenase on Structure, Dynamics and Catalysis

A role for protein dynamics in enzymatic catalysis of hydrogen transfer has received substantial scientific support, but the connections between protein structure and catalysis remain to be established. Valine residues 203 and 207 are at the binding site for the nicotinamide ring of the coenzyme in liver alcohol dehydrogenase and have been suggested to facilitate catalysis with "protein-promoti...

متن کامل

Tissue localization of cytokinin dehydrogenase in maize: possible involvement of quinone species generated from plant phenolics by other enzymatic systems in the catalytic reaction.

The degradation of cytokinins in plants is controlled by the flavoprotein cytokinin dehydrogenase (EC 1.5.99.12). Cytokinin dehydrogenase from maize showed the ability to use oxidation products of guaiacol, 4-methylcatechol, acetosyringone and several other compounds as electron acceptors. These results led us to explore the cability for indirect production of suitable electron acceptors by dif...

متن کامل

Effects Drought, Cytokinin and GA3 on Seedling Growth of Basil (Ocimum basilicum)

Priming is one of the seed enhancement methods that might be resulted in increased seed performance (germination and emergence), seedling growth and plant yield under stress conditions, such as salinity, temperature and drought stress. In order to evaluate the effect of growth hormones on morphology characteristics and essential oil of basil under drought stress condition, a experiment was cond...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of molecular biology

دوره 341 5  شماره 

صفحات  -

تاریخ انتشار 2004